Delay Example
NAND Gate Delay Example (1)

- No velocity saturation and $\lambda=0$
- Assume, $R_{N_DN}'=1k\Omega\cdot\mu m$, $R_{P_UP}'=2k\Omega\cdot\mu m$. $C_{GN}'=C_{GP}'=C_{D}'=2fF/\mu m$, $C_{DN}'=C_{DP}'=C_{D}=1fF/\mu m$
 - $R_{N12}=R_{N1}+R_{N2}=R_{N_DN}'/(W_{N1}/\lambda^*)=1k\Omega\cdot\mu m/(2\mu m/2)=1k\Omega$
 - $R_{P}=R_{P_UP}'/(W_{P})=2k\Omega\cdot\mu m/(3\mu m)=0.67k\Omega$
 - $C_{LOAD}=C_{self}+C_{gate}$
 - $C_{self}=C_{D}'*(3+2)\mu m$ (sharing) or $C_{D}'*(6+2)\mu m$ (not sharing)
 - $C_{gate}=C_{G}'*(12+6)\mu m$
 - $t_{NANDpull_up} = 0.69*0.67k*(41f) = 18.8ps$
 - $t_{NANDpull_dn} = 0.69*1k*(41f) = 28.3ps$
NAND Gate Delay Example

- With velocity saturation $E_{cL}=0.3$ and $\lambda=0.5$
- Calculate $\chi = \frac{W_0}{W_{N1}} = 0.57$
 - $R_{N12} = \frac{R_{N_{DN}}}{(\chi W_{N1})} = 1k\Omega - \mu m / (0.57*2\mu m) = 0.88k\Omega$
 - R_P and C_{LOAD} doesn’t change.
 - $t_{\text{NANDpull_dn}} = 0.69*0.88k*(41f) = 24.9\text{ps}$
Fan-In and Fan-Out

- There are several definitions for the same terms.

- **Fan-In**
 - The number of inputs
 - An indication of the input load that the gate presents to a predecessor gate.
 - Because the series stack is roughly the number of inputs
 - Later we will use Logical Effort to embed this concept.

- **Fan-Out**
 - The number of gates driven by the gate
 - An indication of the capacitive loading of a gate
 - Depends on the type of gate.
 - Typically normalize the loading to the gate capacitance of an inverter with equal drive strength as the gate.
 - \(\text{FO} = \frac{C_{\text{LOAD}}}{C_{\text{INV}}} \), where \(C_{\text{INV}} = C_G'(W_P+W_N) \) and \(R_{\text{INV}} = R_{\text{PULL_UP/DN}} \) of the logic gate
Logical Effort
Logical Effort

- Delay = (0.69) $R_{\text{gate}}(C_{\text{load}} + C_{\text{self}})$ = (0.69) $(R_{\text{gate}}C_{\text{load}} + R_{\text{gate}}C_{\text{self}})$
- Logical Effort basic equation: $d = f + p$
 - $d = \text{delay}/\tau_0$
 - $\tau_0 = 0.69 R_0 C_0$
 - $f = \text{effort delay (also fanout)}$
 - $p = \text{parasitic delay}$
- $d = \text{Delay}/\tau = (R_{\text{gate}}C_{\text{load}} + R_{\text{gate}}C_{\text{self}})/ R_0 C_0$
 - Normalized to the delay of a FO-1 inverter (w/ no self load)
 - Set $R_0 = R_{\text{gate}}$, $d = \text{fanout + normalized parasitic}$
- Key: d is a measure that is independent of process, voltage, temp.
Logical and Electrical Effort

Instead of just $d = f + p$, let $f = gh$

- $g = \text{logical effort (of a gate)}$
 - Cost of implementing logic
- $h = \text{electrical effort}$
 - Cost of driving a load.

$f = \frac{R_{\text{gate}} \cdot C_{\text{load}}}{R_0 \cdot C_0}$, $p = \frac{R_{\text{gate}} \cdot C_{\text{self}}}{R_0 \cdot C_0}$

- Let $R_0 = R_{\text{inv}}$, where $R_{\text{inv}} = R_{\text{gate}}$, $C_0 = C_{\text{inv}}$

- $p = \frac{C_{\text{self}}}{C_{\text{inv}}}$, $f = \frac{C_{\text{in}} \cdot C_{\text{load}}}{C_{\text{in}} \cdot C_{\text{inv}}}$
 - C_{in} is the gate’s input capacitance (for the particular input)
- $g = \frac{C_{\text{in}}}{C_{\text{inv}}}$
 - Each gate (and each input of every gate) has different values.
- $h = \frac{C_{\text{load}}}{C_{\text{in}}}$
 - Output to input capacitance ratio.
Computing Logical Effort: g

- g is an unitless inherent characteristic of the gate
 - Not a function of size of the gate.
 - It is a function of the construction of the gate (connection and relative size between transistors)
 - An indication of the “cost” of implementing the function.

Procedure:
1. Choose an input.
2. Find total device width driven by that input.
3. Find W_P, the pull-up device width of an inverter (single device) that has equivalent drive strength as a gate’s pull-up of that input.
4. For the reference inverter with Equal Rise/Fall Resistance, $\beta \sim \mu$, with W_P from Step 3, determine the total gate widths of the inverter.
5. Divide Step 2 by Step 4 to determine g_{up}.
6. Repeat Steps 3-5 for pull-down device for g_{down}.
 - The two g’s would only be different if β of the gate does not have equal Rise/Fall resistances.
Example of Computation

- Assume not velocity saturated and $\lambda = 0$
- For a NOR gate
 - Let reference $\beta = \mu = 3$

- Reference inverter
 - $W_P : W_N = 6:2$
 - $C_{G_{INV}} = 8$

- NOR gate input capacitance
 - $C_{G_{NOR}} = 14$
 - Logical Effort = $7/4$
Meaning of g in terms of R_N or R_P

- The g is a way to de-rate the R_{eq} of a gate from that of an inverter with equal gate capacitance.

- Write

 - $R_{eq} = \tau / (0.69 C_{INV}) = \tau^* (g/0.69 C_{IN})$.

- If $\tau = (0.69) R_{INV} C_{IN}$ where R_{INV} is the resistance of an inverter with input capacitance $= C_{IN}$,

 - $R_{eq} = R_{INV}^* (g)$ where g is the de-rating factor.
Calculating Parasitic Effort: p

- $p = R_{\text{gate}} C_{\text{self}} / R_{\text{INV}} C_{\text{inv}}$ (where $R_{\text{gate}} = R_{\text{INV}}$)
- Estimate if
 - Know C_D' versus C_G'
 - Assume no sharing of diffusion (or sharing).
- Example: assume $C_D' = 0.5C_G' = 0.5C_o$
 - For an inverter $C_{\text{self}} / C_{\text{inv}} = p_{\text{INV}} = 0.5$
 - Higher $C_{\text{S/D}} / C_G$ results in larger p (penalizing delay more).

NOR Gate
- $C_{\text{S/D NOR}} = 12 + 2 \text{(shared)}$
 - $= 14 = 7C_o$
- $C_{\text{INV}} = 8C_o$
- $p_{\text{NOR}} = 7/8 \approx 2p_{\text{INV}}$
Asymmetric Examples

- If NOR sizing for PMOS is different.
 - Reference Inverter is 6:2.
 - \(C_{\text{inA}} = 10, C_{\text{inB}} = 26 \)
 - \(g_A \ (10/8=5/4) \) not equal to \(g_B \ (26/8=13/4) \)
 - B input is much worse... for a reason.
 - For more complex gates:
 - Reference Inverter is 9:3.
 - \(g_{\text{EDC}}=21/12=7/4, g_{A'B'}=30/12=5/2 \)

\[\beta = \mu = 3 \]

The larger \(g \) is bad. More Effort to do the logic
Logical Effort when Accounting for Non-Idealities

- Assume that \(\beta = 2 \) for reference inverter
- The equivalent PMOS (of inverter)
 - \(\frac{W_{\text{INV}_P}}{W_{P1}} = 0.71 \)
 - \(W_{\text{INV}_P} = 6 \times 0.71 = 4.2 \), \(W_{\text{INV}_N} = W_{\text{INV}_P} / \beta \)
 - \(C_{\text{INV}} = C_G'(6.3) \)
 - \(g_A = \frac{8.1}{6.3} = 1.3 \), \(g_B = \frac{14.1}{6.3} = 2.2 \)

- Note that with velocity saturation, the logical effort for series stack is lower.
A Catalog of Gates

<table>
<thead>
<tr>
<th>Gate Type</th>
<th>g for Different number of inputs</th>
<th>Parasitic delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 n</td>
<td></td>
</tr>
<tr>
<td>Inverter</td>
<td>1</td>
<td>p_{inv}</td>
</tr>
<tr>
<td>NAND</td>
<td>4/3 5/3 6/3 7/3 $(n+2)/3$</td>
<td>$n p_{inv}$</td>
</tr>
<tr>
<td>NOR</td>
<td>5/3 7/3 9/3 11/3 $(2n+1)/3$</td>
<td>$n p_{inv}$</td>
</tr>
<tr>
<td>Multiplexer</td>
<td>2 2 2 2 2</td>
<td>$2 n p_{inv}$</td>
</tr>
<tr>
<td>XOR,XNOR</td>
<td>4 12 32</td>
<td>$n 2^{n-1} p_{inv}$</td>
</tr>
</tbody>
</table>

- Let reference $\beta = \mu = 2$
- Mux is tri-state inverters shorted together.
- XOR assumes that input is bundled (a,a')
- $p_{INV} \sim 1$
- p_{GATE} in this table does not include intermediate nodes.
Example: Ring Oscillator

Assume an N-stage inverter (odd-N) that feedback to itself.
- Toggles 0-1-0-1… with a rate that depends on the delay of the chain.
 - $T_{\text{LOW}} = T_{\text{HIGH}} = T_{\text{DELAY}}$

Approximate the frequency.
- $g_{\text{INV}}=1$, $p_{\text{INV}}=1$, $h=1$
- Stage delay, $d = gh + p = 2$.
- Delay of chain = $N*d = 2N$ (normalized)
- Cycle time $= 4N\tau_0$ (τ_0 is the FO-1 delay of inverter w/o self-load)
- Frequency $= 1/(4N\tau_0)$
Multi-Stage Sizing
Simplified Problem: Buffering

Assume
- β (PNrat) = μ (mobility ratio).
 - $I_{PSAT} = I_{NSAT}$
 - $R_o = \text{Resistance for NMOS with size } W_0 \text{ or PMOS with size } \beta W_0$
 - $C_o = \text{Gate load capacitance of N+PMOS of size } W_0 + \beta W_0$
 - $C_D = \text{Self load capacitance of N+PMOS of size } W_0 + \beta W_0$
 - $\tau_o = (0.69)R_o(C_o)$
 - $\tau_{INV} = (0.69)R_o(\alpha C_o + C_D) = \tau_o(\alpha + p_{inv}); d_{inv} = \alpha + p_{inv}$

Determine the sizes of each of the N stages for minimum delay.
- $d_1 = \alpha_1 + p_{INV}$
- $d_2 = \alpha_2/\alpha_1 + p_{INV}$
Optimum Fanout, f

- Fanout of each stage of the inverter chain
 - Stage 1 = α_1, Stage 2 = α_2/α_1
- Assuming that the fanout of each stage is equal, α_0
 - Let $\alpha_1 = \alpha_0$, $\alpha_2 = \alpha_0^2$, $\alpha_3 = \alpha_0^3$
 - Let $C_{out} = C_{IN}\alpha_0^N$ so $C_{out}/C_{in} = \alpha_0^N$
- Total Delay = Sum (Delay of stage 1-N)
 - $d = N(\alpha_0 + p_{INV})$
- For a given N, the optimum α_0

$$\alpha_0 = \sqrt[N]{\frac{C_{out}}{C_{in}}}$$
Optimum Number of Stages

- For an arbitrary N
 \[
 N = \frac{\ln\left(\frac{C_{out}}{C_{in}}\right)}{\ln(\alpha_0)}
 \]

- For $p \sim 1-2$,
 - Optimal α_0 or $f \sim 4$
 - Fan-Out=4 is a decent place to start for sizing consecutive stages.

\[
\frac{dd}{d\alpha_0} = \frac{d\left[(\alpha_0 + p_{inv})\ln\left(\frac{C_{out}}{C_{in}}\right)\right]}{d\alpha_0}
= 0
\]

Delay versus Fanout

$p=kC_D'/C_G'$
Multi-stage Random Logic

- Usually analyze the critical path (a given input to output)
- Delay of a multi-stage network is the sum of delay of each stage.
 - Path Effort Delay \(D_F = \sum_i f_i \)
 - Path Parasitic Delay \(P = \sum_i p_i \)
 - Total Path Delay \(D = \sum_i d_i = D_F + P \)

\[\begin{align*}
W_P : W_N &= 2 : 2 \\
g &= \frac{4}{3} \\
p &= 2
\end{align*} \]

\[\begin{align*}
W_P : W_N &= 6 : 6 \\
g &= \frac{4}{3} \\
p &= 2
\end{align*} \]

\[\begin{align*}
W_P : W_N &= 24 : 6 \\
g &= \frac{5}{3} \\
p &= 2
\end{align*} \]

\[\begin{align*}
f_1 &= 4 \\
f_2 &= 3.33 \\
f_3 &= 3.33 \\
D_F &= 10.66, P = 6 \\
D &= 16.66 \text{ (gate delays)}
\]
Total Effort

- A path can have a total effort
 - \(G = \) Path Logical Effort
 - \(H = \) Path Electrical Effort
 - \(F = \) Path Effort

 - Consider path effort as fanout. Total fanout should be a product of all fanouts.
 - Consider the path as a single “gate”

- Calculations
 - \(G = (4/3)^2 (5/3) = 3 \)
 - \(H = 60/4 = 15 \)
 - \(F = 44.4; F \neq GH \) (yes for this case)

\[
G_{PATH} = \prod_{i=1}^{N} g_i
\]

\[
H_{PATH} = \frac{C_{OUT}}{C_{IN}}
\]

\[
F_{PATH} = \prod_{i=1}^{N} f_i
\]

- \(f_1 = 4 \)
- \(f_2 = 3.33 \)
- \(f_3 = 3.33 \)
Branching

What if circuits branch?

- G_{PATH} is the same = 2.96
- H_{PATH} is the same = 15
- F_{PATH} differs.
 - $h_1 = 24/4 = 6$, $h_2 = 60/12 = 5$, $h_3 = 2$
 - $F_{\text{PATH}} = 4/3 \times 6 \times 4/3 \times 5 \times 5/3 \times 2 = 177.8$

F is no longer GH.
Branching Effort

We can fix that by introducing one more type of effort.

- Branching Effort, B, such that \(F = BGH \).

Define

\[
B = \prod_i b_i
\]

- \(b_i = \frac{(C_{\text{ON-PATH}} + C_{\text{OFF-PATH}})}{C_{\text{ON-PATH}}} \)
- \(C_{\text{ON-PATH}} = \) capacitance of gate that is on the path in question.
- \(C_{\text{OFF-PATH}} = \) capacitance of gates/wire not on the path.
- Or consider as \(\frac{C_{\text{TOTAL}}}{C_{\text{USEFUL}}} \)

\[
\begin{align*}
g &= \frac{4}{3} & p &= 2 & p &= 2 \\
p &= 2 & W_P:W_N &= 6:6 & C_{\text{out}} &= 60
\end{align*}
\]

- \(b_1 = \frac{24}{12} = 2 \)
- \(b_2 = \frac{60}{30} = 2 \)
- \(b_3 = 1 \) (no branch)

\[
B = 4 \quad \text{BGH} = 177.8 \text{ equals } F
\]
Optimum Delay

- Given the number of stages, N
 - Optimum effort is simply
 \[f_{opt} = \sqrt[3]{BGH} \]

- If the number of stages is small resulting in large N
 - Inverters can be inserted to increase N.
 - f_{opt} for arbitrary N?
 - Same problem as in buffering.
 - Optimum depends on p_{AVG} just like the buffer optimization earlier.
 - Optimal N is such that $f_{opt} \sim 4$ per stage.

\[
D = Nf_{opt} + \sum_i p_i = N(f_{opt} + p_{AVG})
\]

\[
Np_{AVG} = \sum_i p_i
\]

\[
\frac{dD}{df} = 0 = \frac{d[\ln(F)]}{df} \left[\frac{\ln(f_{opt})}{\ln(f_{opt})} (f_{opt} + p_{AVG}) \right] = \frac{dD}{df}
\]

Same as for Inverters
Determining Gate Sizes

Once the path effort is determined, it is quite easy to determine the appropriate gate sizes.

- Start from the output of a path \(C_{\text{out}_i} \).
 \[
 C_{\text{in}_i} = \frac{C_{\text{out}_i} g_i}{f_{\text{opt}}}
 \]
- Work backwards to the input

 - Check your work if the input is the same as the specification.
 - Assuming each unit \(W \) has capacitance of unit \(C \)

\[\begin{align*}
B &= b_1 b_2 = 4 \\
F &= 177.8, f_{\text{opt}} = 5.62 \\
C_{\text{in}_3} &= 60*5/3*1/5.6 = 17.9 \\
C_{\text{in}_2} &= b_2 * 17.9 * 4/3 * 1/5.6 = 8.5 \\
C_{\text{in}_1} &= b_1 * 8.5 * 4/3 * 1/5.6 = 4 \\
W_{P_3} &= 4/5 * 17.9 = 14.3 \\
W_{P_2} &= \frac{1}{2} * 8.5 = 4.25
\end{align*}\]
Example: 2-Stage; 8-Input AND

- Assume symmetric 8-input AND function.
 - $\beta=\mu=2$, width of $3W_o$ is unit C
 - $g_{\text{NAND}}=10/3$, $p_{\text{NAND}}=8$ for an 8-input NAND
 - $g_{\text{INV}}=1$, $p_{\text{INV}}=1$
 - $C_{\text{out}}=100$, $C_{\text{in}}=1$

- Logical Effort
 - $G=10/3$, $B=1$, $H=100$
 - $F=333.3$
 - For 2 stages, $f_{\text{opt}}=18.3$
 - $h_2=18.3$, $C_{\text{in2}}=5.5$, $W_P=11W_o$
 - $h_1=5.5$, $C_{\text{in1}}=1$, $W_P=0.6W_o$
 - Delay = 36.6+9=45.6
 - For 3 stages, $f_{\text{opt}}=7$
 - Delay = 31
 - For 4 stages, $f_{\text{opt}}=4.3$ (2 extra inverters), Delay = 28.2
 - For 5 stages, $f_{\text{opt}}=3.19$ (closer to optimal of 3.6), Delay=28
 - For 6 stages, $f_{\text{opt}}=2.63$ (below optimal of ~3.6), Delay=28.8
Example: Multi-2-Input Gate 8-AND

- Many ways to implement this same function.
- Use a tree of fewer input AND gates.
 - \((A_0A_1)(A_2A_3) \ldots \)
 - If multiple ANDs (as in a memory decoder), then partial results can be shared.
Example: 2-input Implementation

- Assuming that $3W_o$ has capacitance of unit C
- $F = BGH = 4/3^3 \times 100 = 235$
 - $f_{\text{opt}} = 2.48$
 - $D = 6 \times 2.48 + 3 \times 2 + 3 \times 1 = 14.88 + 9 = 23.88$ (better than 8-NAND)
- $G_7: C_{\text{in}7} = 100g_{\text{inv}}/f = 40. W_P = 80W_o$
- $G_6: C_{\text{in}6} = C_{\text{in}7}g_{\text{nand}}/f = 21.5. W_P = 32W_o$
- $G_5: C_{\text{in}5} = C_{\text{in}6}g_{\text{inv}}/f = 8.7. W_P = 17.4W_o$
- $G_4: C_{\text{in}4} = C_{\text{in}5}g_{\text{nand}}/f = 4.7. W_P = 7W_o$
- $G_3: C_{\text{in}3} = C_{\text{in}4}g_{\text{inv}}/f = 1.88. W_P = 3.8W_o$
- Double check $G_2: C_{\text{in}} = C_{\text{in}3}g_{\text{nand}}/f = 1. W_P = 1.5W_o$
Design Methodology

1. Draw network
2. Buffer non-critical paths with minimum-sized gates.
 • Minimize loading on critical path.
 • Simplifies sizing of non-critical path.
3. Estimate total effort along each path (without branching)
4. Verify that the number of stages is appropriate.
 • Add inverters if $f_{opt} > 5$
5. Assign branch ratio of each branch.
 • Estimate based on the ratio of the Effort of the paths.
 • Ignore paths that have little effect (i.e. min-sized).
 • Include wire capacitances
6. Compute delays for the design (include parasitic delay)
 • Adjust branching ratios (especially with wire capacitance).
 • Repeat if necessary until delay meets specification.
7. Reoptimize logic network if f_{opt} is small. (Return to step 3)
Deviations from Optimal

What is the impact on delay if the choice of number of stages or sizing is not perfect?

Figure 3.7 — The relative delay compared to the best possible, as a function of s, the size error of a stage. Assumes $p_{in} = 1$.

Figure 3.5 — The delay relative to the best possible, as a function of the relative error in the number of stages used, N/\hat{N}. Assumes $p_{in} = 1$.