Lecture Overview

* **Iterative algorithms**
 - CORDIC
 - Division
 - Square root

* **Topics covered include**
 - Algorithms and their implementation
 - Convergence analysis
 - Speed of convergence
 - The choice of initial condition
CORDIC

- To perform the following transformation

\[y(t) = y_R + j \cdot y_I \rightarrow |y| \cdot e^{j\phi} \]

and the inverse, we use the CORDIC algorithm

CORDIC - COordinate Rotation DIgital Computer

CORDIC: Idea

- Use rotations to implement a variety of functions

Examples:

\[x + j \cdot y \leftrightarrow |x^2 + y^2| \cdot e^{j\tan^{-1}(y/x)} \]

\[z = \sqrt{x^2 + y^2} \quad z = \cos(y / x) \quad z = \tan(y / x) \]

\[z = x / y \quad z = \sin(y / x) \quad z = \sinh(y / x) \]

\[z = \tan^{-1}(y / x) \quad z = \cos^{-1}(y) \]
CORDIC (Cont.)

- How to do it?
- Start with general rotation by ϕ

 \[
 x' = x \cdot \cos(\phi) - y \cdot \sin(\phi) \\
 y' = y \cdot \cos(\phi) + x \cdot \sin(\phi)
 \]

 \[
 x' = \cos(\phi) \cdot [x - y \cdot \tan(\phi)] \\
 y' = \cos(\phi) \cdot [y + x \cdot \tan(\phi)]
 \]

- The trick is to only do rotations by values of $\tan(\phi)$ which are powers of 2

CORDIC (Cont.)

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\tan(\phi)$</th>
<th>k</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26.565°</td>
<td>2^{-1}</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>14.036°</td>
<td>2^{-2}</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7.125°</td>
<td>2^{-3}</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.576°</td>
<td>2^{-4}</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1.790°</td>
<td>2^{-5}</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>0.895°</td>
<td>2^{-6}</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

- To rotate to any arbitrary angle, we do a sequence of rotations to get to that value
Basic CORDIC Iteration

\[x_{i+1} = (K_i) \cdot [x_i - y_i \cdot d_i \cdot 2^{-i}] \]
\[y_{i+1} = (K_i) \cdot [y_i + x_i \cdot d_i \cdot 2^{-i}] \]

\[K_i = \cos(\tan^{-1}(2^{-i})) = 1/(1 + 2^{-2i})^{0.5} \]
\[d_i = \pm 1 \]

The \(d_i \) is chosen to rotate by \(\pm \varphi \)

- If we don’t multiply \((x_{i+1}, y_{i+1})\) by \(K_i \) we get a gain error which is independent of the direction of the rotation
- The error converges to 0.61 - May not need to compensate for it
- We also can accumulate the rotation angle: \(z_{i+1} = z_i - d_i \cdot \tan^{-1}(2^{-i}) \)

Example

- Initial vector is described by \(x_0 \) and \(y_0 \) coordinates

\[\sqrt{x_0^2 + y_0^2} \]

- We want to find \(\varphi \) and \((x_0^2 + y_0^2)^{0.5}\)
Step 1: Check the Angle / Sign of y_0

- If positive, rotate by -45°
- If negative, rotate by $+45^\circ$

\[
\begin{align*}
 d_1 &= -1 \ (y_0 > 0) \\
 x_1 &= x_0 + y_0/2 \\
 y_1 &= y_0 - x_0/2
\end{align*}
\]

Step 2: Check the Sign of y_1

- If positive, rotate by -26.57°
- If negative, rotate by $+26.57^\circ$

\[
\begin{align*}
 d_2 &= -1 \ (y_1 > 0) \\
 x_2 &= x_1 + y_1/4 \\
 y_2 &= y_1 - x_1/4
\end{align*}
\]
Repeat Step 2 for Each Rotation k

- Until $y_n = 0$

\[x_n = A_n \cdot (x_0^2 + y_0^2)^{0.5} \]

The Gain Factor

- Gain accumulation:
 \[G_0 = 1 \]
 \[G_0G_1 = 1.414 \]
 \[G_0G_1G_2 = 1.581 \]
 \[G_0G_1G_2G_3 = 1.630 \]
 \[G_0G_1G_2G_3G_4 = 1.642 \]

- So, start with x_0, y_0; end up with:
 \[z_3 = 71^\circ \]
 \[(x_0^2 + y_0^2)^{0.5} = 1.642 \ (\ldots) \]

- We did the rectangular-to-polar coordinate conversion
Rectangular-to-Polar Conversion: Summary

- Start with vector on x-axis

\[A = |A| \cdot e^{j\varphi} \]
\[x_0 = |A| \]
\[y_0 = 0, \ z_0 = \varphi \]

\[z_i < 0, \ d_i = -1 \]
\[z_i > 0, \ d_i = +1 \]

\[z_{i+1} = z_i - d_i \cdot \tan^{-1}(2^{-i}) \]

CORDIC Algorithm

\[x_{i+1} = x_i - y_i \cdot d_i \cdot 2^{-i} \]
\[y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i} \]
\[z_{i+1} = z_i - d_i \cdot \tan^{-1}(2^{-i}) \]

\[d_i = \begin{cases}
-1, & z_i < 0 \\
+1, & z_i > 0
\end{cases} \]

\[d_i = \begin{cases}
-1, & y_i > 0 \\
+1, & y_i < 0
\end{cases} \]

Rotation mode
(rotate by specified angle)
Minimize residual angle

Vectoring mode
(align with the x-axis)
Minimize y component

Result
\[x_n = A_n \cdot [x_0 \cdot \cos(z_0) - y_0 \cdot \sin(z_0)] \]
\[y_n = A_n \cdot [y_0 \cdot \cos(z_0) + x_0 \cdot \sin(z_0)] \]
\[z_n = 0 \]

Result
\[x_n = A_n \cdot (x_0^2 + y_0^2)^{0.5} \]
\[y_n = 0 \]
\[z_n = z_0 + \tan^{-1}(y_0/x_0) \]

\[A_n = \prod (1+2^{-2^i}) \cdot 0.5 \rightarrow 1.647 \]

7.13

7.14
Vectoring Example

![Diagram showing vectoring example](image)

<table>
<thead>
<tr>
<th>Acc. Gain</th>
<th>Residual angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_0 = 1$</td>
<td>$\varphi = 30^\circ$</td>
</tr>
<tr>
<td>$K_1 = 1.414$</td>
<td>$\varphi = -15^\circ$</td>
</tr>
<tr>
<td>$K_2 = 1.581$</td>
<td>$\varphi = 11.57^\circ$</td>
</tr>
<tr>
<td>$K_3 = 1.630$</td>
<td>$\varphi = -2.47^\circ$</td>
</tr>
<tr>
<td>$K_4 = 1.642$</td>
<td>$\varphi = 4.65^\circ$</td>
</tr>
<tr>
<td>$K_5 = 1.646$</td>
<td>$\varphi = 1.08^\circ$</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
</tr>
</tbody>
</table>

Vectoring Example: Best-Case Convergence

![Diagram showing vectoring example](image)

<table>
<thead>
<tr>
<th>Acc. Gain</th>
<th>Residual angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_0 = 1$</td>
<td>$\varphi = 45^\circ$</td>
</tr>
<tr>
<td>$K_1 = 1.414$</td>
<td>$\varphi = 0^\circ$</td>
</tr>
<tr>
<td>$K_2 = 1.581$</td>
<td>$\varphi = 0^\circ$</td>
</tr>
<tr>
<td>$K_3 = 1.630$</td>
<td>$\varphi = 0^\circ$</td>
</tr>
<tr>
<td>$K_4 = 1.642$</td>
<td>$\varphi = 0^\circ$</td>
</tr>
<tr>
<td>$K_5 = 1.646$</td>
<td>$\varphi = 0^\circ$</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
</tr>
</tbody>
</table>

In the best case ($\varphi = 45^\circ$), we can converge in one iteration
Calculating Sine and Cosine

To calculate sin and cos:
- Start with $x_0 = 1/1.64$, $y_0 = 0$
- Rotate by φ

![Diagram showing sine and cosine](image)

To calculate sin and cos:
- Start with $x_0 = 1/1.64$, $y_0 = 0$
- Rotate by φ

Functions

Rotation mode

- **sin/cos**
 - $z_0 = \text{angle}$
 - $y_0 = 0$, $x_0 = 1/A_n$
 - $x_n = A_n \cdot x_0 \cdot \cos(z_0)$
 - $y_n = A_n \cdot x_0 \cdot \sin(z_0)$
 - ($=1$)

Vectoring mode

- **\tan^{-1}**
 - $z_0 = 0$
 - $z_n = z_0 + \tan^{-1}(y_0/x_0)$
 - **Vector/Magnitude**
 - $x_n = A_n \cdot (x_0^2 + y_0^2)^{0.5}$

Polar \rightarrow Rectangular

- $x_n = r \cdot \cos(\varphi)$
- $y_n = r \cdot \sin(\varphi)$

Rectangular \rightarrow Polar

- $x_0 = r$
- $z_0 = \varphi$
- $y_0 = 0$
- $r = (x_0^2 + y_0^2)^{0.5}$
- $\varphi = \tan^{-1}(y_0/x_0)$
CORDIC Divider

- To do a divide, change CORDIC rotations to a linear function calculator

\[
x_{i+1} = x_i - 0 \cdot y_i \cdot d_i \cdot 2^{-i} = x_i
\]

\[
y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}
\]

\[
z_{i+1} = z_i - d_i \cdot (2^{-i})
\]

Generalized CORDIC

\[
x_{i+1} = x_i - m \cdot y_i \cdot d_i \cdot 2^{-i}
\]

\[
y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}
\]

\[
z_{i+1} = z_i - d_i \cdot e_i
\]

<table>
<thead>
<tr>
<th>(d_i)</th>
<th>Rotation</th>
<th>Vectoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_i = -1, z_i < 0)</td>
<td>(d_i = -1, y_i > 0)</td>
<td>(d_i = +1, y_i < 0)</td>
</tr>
<tr>
<td>sign((z_i))</td>
<td>-sign((y_i))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>(m)</th>
<th>(e_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>+1</td>
<td>tan(^{-1}(2^{-i}))</td>
</tr>
<tr>
<td>Linear</td>
<td>0</td>
<td>(2^{-i})</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>-1</td>
<td>tanh(^{-1}(2^{-i}))</td>
</tr>
</tbody>
</table>
An FPGA Implementation

- Three difference equations directly mapped to hardware
- The decision d_i is driven by the sign of the y or z register
 - Vectoring: $d_i = -\text{sgn}(y_i)$
 - Rotation: $d_i = \text{sgn}(z_i)$
- The initial values loaded via muxes
- On each clock cycle
 - Register values are passed through shifters and add/sub and the values placed in registers
 - The shifters are modified on each iteration to cause the desired shift (state machine)
 - Elementary angle stored in ROM
- Last iteration: results read from reg

Iterative Sqrt and Division

- Inputs:
 - a (14 bits), reset (active high)
- Outputs:
 - zs (16 bits), zd (16 bits) Total: 32 bits

Iterative $1/\sqrt{Z}$: Simulink XSG Model

- **User defined parameters**
 - Wordlength (#bits, binary pt)
 - Quantization, overflow
 - Latency, sample period

- **The choice of initial condition**
 - Determines # iterations
 - and convergence...

\[x_s(k+1) = \frac{x_s(k)}{2 \cdot (3 - Z \cdot x_s^2(k))} \]

\[x_s(k) = \frac{1}{\sqrt{N}} \lim_{k \to \infty} \]

\[y_s(k+1) = \frac{y_s(k)}{2 \cdot (3 - y_s^2(k))} \]

\[y_s(k) = \frac{1}{\sqrt{N}} \lim_{k \to \infty} \]

\[e_s(k) = y_s(k) - 1 \]

\[e_s(k+1) = \frac{1}{2} \cdot e_s(k)^2 \cdot (3 + e_s(k)) \]
Quadratic Convergence: 1/N

\[x_d(k+1) = x_d(k) \cdot (2 - N \cdot x_d(k)) \quad x_d(k) \to \frac{1}{N_{k \to \infty}} \]

\[y_d(k+1) = y_d(k) \cdot (2 - y_d(k)) \quad y_d(k) \to 1_{k \to \infty} \]

\[e_d(k) = y_d(k) - 1 \]

\[e_d(k+1) = -e_d(k)^2 \]

Initial Condition: 1/sqrt(N)

\[y_s(k+1) = \frac{y_s(k)}{2} \cdot (3 - y_s(k)^2) \quad y_s(k) \to 1_{k \to \infty} \]

Convergence: \(0 < y_s(0) < \sqrt{3} \)

Conv. stripes: \(\sqrt{3} < y_s(0) < \sqrt{5} \)

Divergence: \(y_s(0) > \sqrt{5} \)
Initial Condition: $1/N$

\[y_d(k+1) = y_d(k) \cdot (2 - y_d(k)) \quad \text{Convergence: } 0 < y_d(0) < 2 \]

\[y_d(k) \rightarrow 1_{k \to \infty} \]

\[y_d(k) \]

\[y_d(k+1) \]

1/sqrt(N): Convergence Analysis

\[x_{n+1} = \frac{x_n}{2} \cdot (3 - N \cdot x_n^2) \]

\[x_n \rightarrow \frac{1}{\sqrt{N}}_{n \to \infty} \]

\[x_n = \frac{y_n}{\sqrt{N}} \]

\[y_{n+1} = \frac{y_n}{2} \cdot (3 - y_n^2) \quad [3] \]

Error:

\[e_n = 1 - y_n \]

\[e_{n+1} = \frac{3}{2} \cdot e_n^2 - \frac{1}{2} \cdot e_n^3 \]

$y_{n+1} = \frac{y_n}{2} \cdot (3 - y_n^2)$

$y_n \to 1_{n \to \infty}$

$0 < y_0 < \sqrt{3} \Rightarrow$ convergence

$\sqrt{3} < y_0 < \sqrt{5} \Rightarrow$ conv. stripes

$y_0 > \sqrt{5} \Rightarrow$ divergence

\Rightarrow divergence

\Rightarrow conv. stripes

\Rightarrow convergence
Choosing the Initial Condition

Initial Condition > sqrt(5) Results in Divergence
1/sqrt(): Picking Initial Condition

\[x_{n+1} = \frac{x_n}{2} \cdot (3 - N \cdot x_n^2) \]

\[x_n \to \frac{1}{\sqrt{N}} \quad \text{as } n \to \infty \]

- **Equilibriums**: \(0, \pm \frac{1}{\sqrt{N}} \)

- **Initial condition**
 - Take: \(V(x_n) = \left(x_n - \frac{1}{\sqrt{N}} \right)^2 \) (6.1)
 - Find \(x_0 \) such that:
 \[V(x_{n+1}) - V(x_n) < 0 \quad \forall n \quad (n = 0,1,2,...) \] (6.2)
 - Solution: \(S = \{ x_0 : V(x_0) < a \} \) (6.3)

 “Level set” \(V(x_0) = a \) is a convergence bound
 \(\Rightarrow \) Local convergence (3 equilibriums)

Descending Absolute Error

- **sqrt**: \(V_s(x_0) = \frac{x_0}{4} \cdot (x_0 - 1)^2 \cdot (x_0 + 1) \cdot (x_0^2 + x_0 - 4) \)
 - Initial condition, \(x_0 \):
 \[V_s(x_0) = x_0 \cdot (x_0 - 1)^2 \cdot (x_0 - 2) \]

- **Div**: \(V_d(x_0) = x_0 \cdot (x_0 - 1)^2 \cdot (x_0 - 2) \)
 - Initial condition, \(x_0 \):

Descending error:

\(E(x_k) = (x_k - 1)^2 \quad V(x_k) = E(x_{k+1}) - E(x_k) < 0 \quad \forall k \)
1/sqrt(N): Picking Initial Condition (Cont.)

(6.2) \[\frac{x_0}{2} \cdot (1 - N \cdot x_0^2) \cdot \left(\frac{5}{2}x_0 - \frac{N}{2}x_0^3 - \frac{2}{\sqrt{N}} \right) < 0 \]

Roots:
\[x_1 = \frac{1}{\sqrt{N}} \]
\[x_{2,3} = \frac{1}{2 \cdot \sqrt{N}} (-1 \pm \sqrt{17}) \]

Max:
\[x_{0M} = \sqrt{\frac{5}{3N}} \]

Initial Condition Circuit

(6.3) \[\frac{1}{\sqrt{N}} - \sqrt{a} < x_0 < \frac{1}{\sqrt{N}} + \sqrt{a} \]

\[N \]
\[>16 \]
\[>4 \]
\[>1 \]
\[>1/4 \]
\[>1/16 \]
\[>1/64 \]

\[x_0 = 1/4 \]
\[x_0 = 1/2 \]
\[x_0 = 1 \]
\[x_0 = 2 \]
\[x_0 = 4 \]
\[x_0 = 8 \]
Left: Internal Node, Right: Sampled Output

- Internal node and output
- Zoom in: convergence in 8 iterations
- Internal divide by 2 extends range

Convergence Speed

- **# iterations required for specified accuracy**

<table>
<thead>
<tr>
<th>Target relative error (%)</th>
<th>0.1%</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_0: 50%, # iter (sqrt/div)</td>
<td>5 / 4</td>
<td>5 / 3</td>
<td>4 / 3</td>
<td>3 / 2</td>
</tr>
<tr>
<td>e_0: 25%, # iter (sqrt/div)</td>
<td>3 / 3</td>
<td>3 / 2</td>
<td>2 / 2</td>
<td>2 / 1</td>
</tr>
</tbody>
</table>

- **Adaptive algorithm**
 - current result \rightarrow .ic for next iteration

N_k \rightarrow .ic \rightarrow Iterative algorithm \rightarrow $(y_k)\rightarrow 1/\sqrt{N}$
Summary

- Iterative algorithms can be used for a variety of DSP functions
- CORDIC uses angular rotations to compute trigonometric and hyperbolic functions as well as divide and other operations
 - One bit of resolution is resolved in each iteration
- Newton-Raphson algorithms for square root and division have faster convergence than CORDIC
 - Two bits of resolution are resolved in each iteration (the algorithm has quadratic error convergence)
- Convergence speed greatly depends on the initial condition
 - The choice of initial condition can be made to guarantee decreasing absolute error in each iteration
 - For slowly varying inputs, adaptive algorithms can use the result of the current iteration as the initial condition
 - Hardware latency depends on the initial condition and accuracy

References

Additional References

